Microwave Pre-Treatment of Coal and Coal Blends to Improve Milling Performance

Dr Sam Kingman

Dr Tao Wu and Dr Ed Lester
Aims and Objectives

- Quantify grindability changes as a result of treatment
 - Determine influence of coal type on produced energy savings

- Optimisation of microwave treatment for different coal types
 - Cavity type
 - Microwave power and irradiation time
 - Microwave delivery method

- Quantify influence of microwave treatment on coal burnout behaviour

- Preliminary techno-economic analysis of microwave assisted coal grindability at pilot scale
Background and Previous Work

• Coal grinding for power generation is highly energy intensive

• Strong drivers to reduce energy consumption and also produce finer product size distribution

• Many workers have suggested application of MW energy to coal
 • desulphurisation
 • drying
 • thermal embrittlement

• Significant technical interest but economics were often poor
Microwave Heating Basics

- Conventional heating
 - entire furnace is hot
 - sample hotter on surface (initially)

- Microwave heating
 - only sample is heated
 - heating is volumetric
 - sample ends up hotter in centre
 - heating can be highly selective
 - relies upon dielectric properties of individual phases
Industrial Microwave Heating System

Diagram:
- **Incoming Supply**
- **Microwave Power Unit**
 - Power supplies and protection systems
 - Magnetron or klystron tube
 - Circulator
- **Water Load**
- **Control and Automatic Systems**
- **High Frequency Breakdown Phenomena**
- **Conventional Heating Equipment or Heat Pump or Other Electrical Heating Systems**
- **Applicator**
- **Vacuum Processing**

Hybrid System
Multi-Mode Applicators

- Field distribution within a load depends on dielectric properties, size and location

- Multi-mode applicators best suited to large volume loads (>50% vol.)

- Small loads give non uniform temperature distribution due to uneven field distribution

- Can use turntable or mode stirrer to ‘smear’ the electric field

- Reliable scale up is very difficult
Single Mode Applicators

• By far the most efficient applicator
• Field pattern is well defined and target load positioned accordingly
• Very high power densities (electric field strengths) and heating rates possible
• Formation of standing wave limits physical size (maximum diameter is one wavelength)
• Used for heating low loss factor (hard to heat) materials
Methodology

• Characterisation of coals both pre and post treatment (6 coals)
 – Size analysis
 – Proximate analysis
 – Petrographic assessment
 – Hardgrove grindability
 – Ball Mill grindability tests
 – Intrinsic reactivity

• Microwave treatment
 – Initial work focused on batch treatment using single mode cavity
 – Heating rate orders of magnitude faster than previous testwork

• Pilot scale >t/hr grinding
 – Lupulco Mill
 – Ball Mill
Microwave Treatment

3-15kW @ 2.45GHz, 0.1 S
Example Results e.g. La Loma

La Loma +16.00-19.00mm
MW-Treated
Untreated

La Loma +9.50-13.20mm
MW-Treated
Untreated

La Loma +4.75-6.70mm
MW-Treated
Untreated
Example Results e.g FF Indonesian

Graph 1:
- **FF Indonesian +16.00-19.00mm**
- **MW-Treated**
- **untreated**

Graph 2:
- **FF Indonesian +9.50-13.20mm**
- **MW-Treated**
- **untreated**

Graph 3:
- **FF Indonesian +4.75-6.70mm**
- **MW-Treated**
- **untreated**
Why Does the Grindability Change?

Macro scale fissures created by MW-treatment

Micro scale fissures created by MW-treatment

(320x mag)
How is the Coal Influenced?

<table>
<thead>
<tr>
<th></th>
<th>Volatiles</th>
<th>Fixed Carbon</th>
<th>Fuel Ratio</th>
<th>Volatiles</th>
<th>Fixed Carbon</th>
<th>Fuel Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collinsville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated (Daf)</td>
<td>13.6</td>
<td>86.4</td>
<td>6.3</td>
<td>13.6</td>
<td>86.4</td>
<td>6.3</td>
</tr>
<tr>
<td>MW-Treated (Daf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3.35-4.75 mm</td>
<td>14.0</td>
<td>86.0</td>
<td>6.1</td>
<td>14.1</td>
<td>85.9</td>
<td>6.1</td>
</tr>
<tr>
<td>+9.50-13.20 mm</td>
<td>13.8</td>
<td>86.2</td>
<td>6.2</td>
<td>13.7</td>
<td>86.3</td>
<td>6.3</td>
</tr>
<tr>
<td>+13.20-19.00 mm</td>
<td>14.0</td>
<td>86.0</td>
<td>6.2</td>
<td>14.0</td>
<td>86.0</td>
<td>6.1</td>
</tr>
<tr>
<td>+19.00-26.50 mm</td>
<td>13.6</td>
<td>86.4</td>
<td>6.3</td>
<td>13.6</td>
<td>86.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Daw Mill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated (Daf)</td>
<td>40.0</td>
<td>60.0</td>
<td>1.5</td>
<td>39.7</td>
<td>60.3</td>
<td>1.5</td>
</tr>
<tr>
<td>MW-Treated (Daf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3.35-4.75 mm</td>
<td>39.8</td>
<td>60.2</td>
<td>1.5</td>
<td>39.1</td>
<td>60.9</td>
<td>1.6</td>
</tr>
<tr>
<td>+6.70-9.50 mm</td>
<td>39.6</td>
<td>60.4</td>
<td>1.5</td>
<td>38.8</td>
<td>61.2</td>
<td>1.6</td>
</tr>
<tr>
<td>+13.20-19.00 mm</td>
<td>41.0</td>
<td>59.0</td>
<td>1.4</td>
<td>38.5</td>
<td>61.5</td>
<td>1.6</td>
</tr>
<tr>
<td>+19.00-26.50 mm</td>
<td>33.0</td>
<td>67.0</td>
<td>2.0</td>
<td>33.6</td>
<td>66.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Garlaffan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated (Daf)</td>
<td>33.8</td>
<td>66.2</td>
<td>2.0</td>
<td>34.0</td>
<td>66.0</td>
<td>1.9</td>
</tr>
<tr>
<td>MW-Treated (Daf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3.35-4.75 mm</td>
<td>32.7</td>
<td>67.3</td>
<td>2.1</td>
<td>32.1</td>
<td>67.9</td>
<td>2.1</td>
</tr>
<tr>
<td>+6.70-9.50 mm</td>
<td>35.3</td>
<td>64.7</td>
<td>1.8</td>
<td>34.4</td>
<td>65.6</td>
<td>1.9</td>
</tr>
<tr>
<td>+13.20-19.00 mm</td>
<td>33.0</td>
<td>67.0</td>
<td>2.0</td>
<td>33.6</td>
<td>66.4</td>
<td>2.0</td>
</tr>
<tr>
<td>+19.00-26.50 mm</td>
<td>33.8</td>
<td>66.2</td>
<td>2.0</td>
<td>34.0</td>
<td>66.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Preliminary Conclusions

- MW treatment can significantly improve the grindability of coal
 - High moisture content
 - Hard coals

- Treatment induces slight change in moisture content

- Little change in:
 - Volatile content
 - Fuel ratio

- Scale up needs to be addressed:
 - Cavity design
 - Continuous treatment
Cavity Design Issues

Power Density Plot

(EM simulations by Stellenbosch University, South Africa)
Continuous Tunnel Applicator

- Self cancelling steps to achieve vertical uniformity
- Good lateral uniformity inherent in design
- Confirmed by single and multiphase simulation
- Watt for Watt, this is the best design to maximise throughput

(EM simulations by Stellenbosch University, South Africa)
Effect of Reflection Step

(EM simulations by Stellenbosch University, South Africa)
Processing Uniformity

- Lateral uniformity very good

- Vertical uniformity acceptable due to step

(EM simulations by Stellenbosch University, South Africa)
Commissioned Design

3-15kW, 2.45GHz >8t/hr -19mm feed
Acknowledgements

• BCURA for funding this project
• E-ON and EDF Energy for providing coal samples and test assistance
• University of Stellenbosch, South Africa for electromagnetic simulations